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In the classical theory of domain coarsening the particles of the coarsening
phase evolve by diffusional mass transfer with a mean field. We study the long-
time behavior of measure-valued solutions with compact support to this model
coupled with the constraint of conserved total mass, including mean-field mass.
Unlike the case of conserved volume fraction, this system has no precisely self-
similar solutions, and sufficiently low supersaturation can lead to the finite-time
extinction of all particles. We find a new explicit family of asymptotically self-
similar solutions, and in case that the largest particle size is unbounded we
establish results similar to the volume-conserved case. These include necessary
criteria for asymptotic self-similarity, and sensitive dependence of long-time
behavior on the distribution of largest particles in the system.

KEY WORDS: Kinetics of phase transitions; domain coarsening; conservation
of mass; asymptotic behavior; self–similarity.

1. INTRODUCTION

In the classical theory of coarsening of precipitates in supersaturated solid
solutions, the evolution of the particle size distribution is described by the
nonlocal conservation law

“tf+“v((v1/3h(t)−1) f)=0, v > 0, t > 0, (1)

a h(t)+F
.

0
vf(t, v) dv=V. (2)
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Here f(t, v) denotes the size distribution of spherical particles of the pre-
cipitate, normalized such that >v0+ f(t, u) du is the number of remaining
particles with volume less than v divided by the number at time 0. In non-
dimensional terms, the growth rate of a particle of volume v at time t is
v1/3h(t)−1 in a uniformly supersaturated solution with mean-field super-
saturation h(t). The critical volume which decides whether the particle
shrinks or grows is then h(t) −3. The first equation reflects the fact that
particles of finite size are neither created nor destroyed, whereas the second
equation guarantees conservation of mass, taking into account matter in
the diffusion field (a > 0 is constant).

Equivalent equations were first derived by Lifshitz and Slyozov (10) and
Wagner (20) (LSW) to explain the increase of the average particle size in the
aging process of a first order phase transformation. Performing an asymp-
totic analysis for large times, they argued that the size distribution f
approaches a form which is self-similar under scaling with respect to the
critical volume. They predicted that asymptotically the critical volume
grows linearly in time and that the number of particles decreases propor-
tional to t −1. Their most intriguing prediction was that, independent of the
initial data, almost all scaled distributions approach a particular explicit
self-similar form, which in turn uniquely determines rate constants for the
above power laws.

While experiments have confirmed self-similar coarsening, observed
distribution functions were in general much broader and rate constants in
the power laws much larger than in the LSW predictions (see e.g. ref. 8)).
This deviation of the theory from experiment is explained by the mean field
nature of equation (1)—the validity of this growth law is restricted to quite
unrealistic situations. We do not want to go into these discussions here, but
refer to Voorhees (18, 19) for the background of the problem and a review of
the metallurgical and physical literature, and to ref. 12 for a mathematical
justification of the growth law. The LSW equations also arise in a different
context, namely as an asymptotic limit of the Becker–Döring equations. (15)

Whereas in the analysis of Lifshitz and Slyozov the total mass con-
straint (2) is used, Wagner argued that mass in the diffusion field can be
neglected and thus the volume fraction is conserved, i.e.,

F
.

0
vf(t, v) dv=V. (3)

With this constraint in place of (2), equation (1) admits exact self-similar
solutions. Lifshitz and Slyozov instead argued that the supersaturation h
has to decrease to zero monotonically and with this assumption they
derived the same limit behavior as Wagner.
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In an earlier paper (14) the authors examined mathematically the
asymptotic behavior of solutions to (1) with the volume constraint (3), for
initial data with compact support. Instead of the universal behavior
expected from the LSW analysis, the long-time behavior was shown to
depend sensitively on the details of the initial distribution near the end of
the support, that is, on the distribution of the largest particles. Among
other things, convergence to the predicted LSW self-similar solution was
proved impossible whenever the initial distribution is comparable to any
finite power of distance to the end of the support.

A similar observation was made independently in the physical litera-
ture by Meerson and Sasorov (11) and Giron et al. (7) for data with compact
support. They furthermore claim that for data with infinite support the
LSW solution is approached for large times. Carr and Penrose (2) proved
rigorous results for a simplified LSW equation which exhibits similar fea-
tures. Velázquez (17) considered a Fokker–Planck approximation of the
LSW equation, and showed that if a limit is achieved it must be the LSW
solution.

In the present paper we study the long-time behavior of solutions of
(1) with the total-mass constraint (2). There are two main differences
between this case and that with the volume constraint (3). First, (3) implies
that

1
h(t)
=

>.0 v1/3f(t, v) dv
>.0 f(t, v) dv

.

That is, the critical radius is equal to the mean radius in the volume-con-
strained system. Consequently, in this case the largest particle in the system
will always grow monotonically, and without bound if there is no Dirac
delta at the end of the support.

By contrast, we find that constraint (2) can imply a quite different
behavior. Depending on the relation between the initial supersaturation h0
and the initial distribution f0 it can happen that all particles dissolve in
finite time. Also, an ‘‘intermediate’’ stage is possible, where the maximal
particle size v̄(t) converges to a nonzero limit and total particle volume
approaches zero while h(t) converges to V/a. Results in this direction for a
different model of crystal growth but also combined with a constraint cor-
responding to (2) can be found in refs. 5, 6.

The second difference between the total-mass and volume constraints
is that the volume-constrained system (1) and (3) has a family of self-
similar solutions while (1) and (2) does not. However, here we exhibit new
exact solutions with constant scaled mean field v̄1/3h, which converge for
large times towards self-similar profiles. In the case that the largest particle
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volume is unbounded in time, we can use these solutions to establish
essentially all of the same results as in ref. 14 for the case of conserved
volume.

The paper is organized as follows. In Section 2 we recall results we
proved in ref. 13 which establish the well posedness of the initial value
problem for general initial data—the initial size distribution can be an
arbitrary probability measure with compact support. We also study the
regularity of h. Section 3 contains results that classify behavior for large
times in the unscaled variables. There are different possibilities depending
on whether the initial distribution carries a Dirac delta at the end of the
support or not.

In Section 4 we study the case that the maximal particle volume v̄(t)
increases to infinity. This largest volume is eventually monotonic in time
and we can use it to rescale and describe the dynamics in terms of the
scaled cumulative distribution function. We then describe exact solutions
with constant scaled mean field x=v̄1/3h and obtain results essentially the
same as in ref. 14, giving proofs only where the arguments of ref. 14 do not
immediately carry over. (It is more difficult to control the scaled mean field
in the present case.) The results include the following:

(i) If the distribution function is initially comparable to a power law
at the end of its support, then the scaled distribution function cannot con-
verge to the predicted LSW form.

(ii) The possible limiting forms of the scaled distribution function are
the same as those in the volume-constrained case, being classified by their
exponent of vanishing p ¥ [0,.]. (For the LSW solution, p=..)

(iii) For convergence to a self-similar form having p ¥ [0,.), it is
necessary that the initial distribution function be ‘‘regularly varying with
exponent p’’ at the end of its support, as in ref. 14.

(iv) Asymptotically self-similar solutions with sufficiently small p are
shape-stable to perturbations that are small in a certain restrictive sense,
and for such perturbations the condition of regular variation is both
necessary and sufficient for convergence to self-similar form.

The consequences of these results are further described in ref. 14. In
particular, given arbitrary initial data, one can always perturb the sizes of
an arbitrarily small fraction of the largest particles so that the initial dis-
tribution function satisfies the condition in (i) but is not regularly varying.
It is then impossible for the perturbed solution to converge to any self-
similar form. With respect to the natural topology for well-posedness of the
initial value problem, therefore, nonconvergence occurs for a dense set of
initial data.
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The analysis in ref. 14 and in the present paper does not cover the case
of data with infinite support. One might expect that for sufficiently nice
data, e.g. data with an exponentially decreasing tail, the solution converges
to the LSW–solution as claimed by Meerson et al. (11, 7) Furthermore it
seems plausible, that if convergence occurs it should be towards the
LSW–solution. However, it is not clear to us, what could be a necessary
(and sufficient) condition for convergence towards a self–similar profile,
replacing the the condition of regularly variation for data with compact
support.

2. BASIC PROPERTIES OF SOLUTIONS

Since we assume a > 0, by rescaling we can assume from now on
without loss of generality that a=1. Throughout this paper we will deal
with systems in which the particle size is initially bounded. This means that
the initial size distribution is a probability measure with compact support.

In ref. 13 the authors developed a theory for well posedness of the
initial value problem for this type of data. Collet and Goudon (3) studied
well posedness for a family of related models for data with integrable first
moment. For L1–data Laurencot (9) generalized this result to a larger class
of equations which also include the LSW model.

To discuss the results of ref. 13 we introduce some notation which we
will also use later in this paper. It is convenient to work with the cumula-
tive distribution function j which is the fraction of initially existing par-
ticles with volume larger than v. Formally it is defined by −dj=f(t, v) dv
where f(t, v) dv is the notation for a general particle distribution which is a
measure. The usual distribution function is then F=1−j but we will also
refer to j as the distribution function if there is no danger of confusion.
The function vW j(t, v) is decreasing (meaning j(x1) \ j(x2) if x1 [ x2)
and is taken to be right continuous. (This is as in ref. 14, where this func-
tion is erroneously described as left continuous, which was the convention
taken in ref. 13. We apologize for the confusion.)

For the theory of well-posedness it turns out that it is even better to
regard the volume v as a function of j. Mathematically, this function is
defined for given j(t, v) via

v(t, y)=sup {x | j(t, x) > y}K0

=3 sup {x | j(t, x) > y} for 0 [ y <max j(t, x),
0 for y \ max j(t, x),

(4)

where we use the notation aKb=max(a, b). Thus, v is decreasing and right
continuous with v(t, 1)=0. For a finite system of particles with volume
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ranked in decreasing order v0(t) \ ... \ vN−1(t), we have v(t, j)=vj for
j ¥ [ jN ,

j+1
N ).

As a distance function for two size distributions with compact support
we take as in ref. 13 the supremum norm between the associated volume
rankings v(t, j) defined as above. This can be interpreted as the least
‘‘maximal volume change’’ required to alter one size distribution into the
other. Mathematically this corresponds to the notion of the L. Wasserstein
distance between probability measures (cf. ref. 13).

The equation governing the evolution of v(t, j) is just

“tv(t, j)=v(t, j)1/3 h(t)−1 (5)

for all (t, j) such that v(t, j) > 0. In ref. 13, we proved the following
theorem on the global well-posedness of the initial value problem. Let rcd
be the set of right-continuous decreasing functions v0: [0, 1]Q R with
v0(1)=0, with metric topology given by the supremum norm of the differ-
ence:

||v1−v2||=sup
j
|v1(j)−v2(j)|.

For any T > 0, C([0, T], rcd) is the metric space of continuous
v: [0, T]Q rcd, with metric given by sup[0, T] ||v1(t, · )−v2(t, · )||.

Theorem 2.1 (ref. 13, Thm. 4.1). Let v0 ¥ rcd, V ¥ R. Then there
exists a unique function v ¥ C([0,.), rcd) such that

v(t, j)=v0(j)+F
t

0
(v(s, j)1/3 h(s)−1) ds (6)

whenever v(t, j) > 0 with h(t) determined by

h(t)+F
1

0
v(t, j) dj=V. (7)

Given T > 0, C0 > 0, there exists a positive constant C such that, given two
solutions as above which also satisfy max(V1, V2, v1(0, 0), v2(0, 0)) [ C0 then

sup
0 [ t [ T

||v1(t, · )−v2(t, · )|| [ C(||v1(0, · )−v2(0, · )||+|V1−V2|).

A result which is independent of the type of the conservation equation
as long as h(t) \ 0, is that the dynamics stretch the volume ranking verti-
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cally (that is the particle size distribution horizontally) in a smooth manner.
We will see later that if h0 > 0 then h(t) > 0 for all t > 0.

Proposition 2.2 (ref. 14, Prop. 2.2). Let h0 > 0 and (h, v) be a
solution of (6) and (7) as given by Theorem 2.1. For x > 0, let V(t, x) be
the solution of

V(t, x)=x+F
t

0
(V(s, x)1/3 h(s)−1) ds

defined on a maximal time interval [0, t̂(x)) where V > 0. Then

(a) V is analytic in x, i.e., whenever V(t0, x0) > 0, the map xQ
V(t0, x) is analytic near x0.

(b) “V/“x is strictly increasing in time for each x.
(c) v(t, j)=V(t, v0(j)).

For the analysis to come we introduce the function j̄(t), which
denotes the end of the support of v(t, · ), i.e.

j̄(t)=sup {f ¥ [0, 1] | v(t, f) > 0}, (8)

which is just the fraction of particles at time 0 that still exist at time t. The
function j̄ is decreasing in time and right continuous, but may have jumps.
We conclude from the properties of j̄ that

lim sup
hQ 0

j̄(t+h)=j̄(t−0) := lim
hQ 0−

j̄(t+h)

and

lim inf
hQ 0

j̄(t+h)=j̄(t+0) := lim
hQ 0+

j̄(t+h)=j̄(t).

With this notation (2) can be written as

h(t)+F
j̄(t)

0
v(t, j) dj=V (9)

and therefore h is continuous; indeed, it is locally Lipschitz and hence dif-
ferentiable a. e. Consequently for fixed j, tW v(t, j) is continuously dif-
ferentiable, and satisfies “tv=v1/3h−1 for all t as long as v(t, j) > 0.

Now, with

dhh(t) :=
h(t+h)−h(t)

h
,
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the upper, lower, right and left derivatives of h are defined by

“th(t)=lim sup
hQ 0

dhh(t), “th(t)=lim inf
hQ 0

dhh(t), (10)

“
+
t h(t)= lim

hQ 0+
dhh(t), “

−
t h(t)= lim

hQ 0−
dhh(t). (11)

Lemma 2.3. It holds for all t > 0 that

“th(t)=“
−
t h(t)=F

j̄(t−0)

0
(1−v(t, j)1/3 h(t)) dj

=F
j̄(t)

0
(1−v(t, j)1/3 h(t)) dj+j̄(t−0)− j̄(t), (12)

“th(t)=“
+
t h(t)=F

j̄(t)

0
(1−v(t, j)1/3 h(t)) dj. (13)

Proof. With

yj :=sup {t | v(t, j) > 0}

since v(t, j)=0 for t > yj we have

“tv=3
v(t, j)1/3 h(t)−1 for t < yj,
0 for t > yj.

Using the convention aKb :=max(a, b) and aNb :=min(a, b) we compute

dhh(t)=
1
h
3F j̄(t)
0
v(t, j) dj−F

j̄(t+h)

0
v(t+h, j) dj4

=
1
h
3F j̄(t)K j̄(t+h)
0

(v(t, j)−v(t+h, j)) dj4

=−F
j̄(t)K j̄(t+h)

0
F
1

0
“tv(t+sh, j) ds dj

=F
j̄(t)N j̄(t+h)

0
F
1

0
(1−v(t+sh, j)1/3 h(t+sh)) ds dj

+F
j̄(t)K j̄(t+h)

j̄(t)N j̄(t+h)
F
1

0
−“tv(t+sh, j) ds dj.
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Since h and v( · , j) are continuous and since j̄(t) is decreasing and right
continuous, j̄(t)N j̄(t+h)Q j̄(t) as hQ 0 and the first term converges to

F
j̄(t)

0
(1−v(t, j)1/3 h(t)) dj.

If h > 0 then j̄(t+h)Q j̄(t) and the second integral converges to zero since
“tv is bounded.

If h < 0 then j̄(t+h)Q j̄(t−0). In case j̄(t−0) > j̄(t) we claim that

lim
hQ 0−

“tv(t+h, j)=−1

for all j ¥ [j̄(t), j̄(t−0)). This follows from the fact that v(t+h, j) > 0 for
all small h < 0, v(t, j)=0, and from the equation for v. L

So far we did not make any assumption on the datum V. Since the
distribution function is always positive, V [ 0 implies that h is always
nonpositive. Accordingly all particles shrink until they are dissolved, and
no competition between particles takes place.

If V > 0 and h(0) < 0 then all particles will shrink in a certain time
interval until they are either dissolved or until there is a time t0 such that
h(t0) > 0. The following lemma shows that then h will be positive for all
later times.

Lemma 2.4. If h(t0) > 0 then h(t) > 0 for all t > t0.

Proof. We have seen that h is continuous in t. Let t1 > t0 be the first
time such that h(t1)=0. By conservation of mass (note that h(t0) > 0
implies V > 0) it follows that j̄(t1) > 0. But (13) implies

“th(t1)=F
j̄(t1)

0
(1−v(t1, j)1/3 h(t1)) dj=F

j̄(t1)

0
1 dj=j̄(t1) > 0

which gives a contradiction. L

In view of the above remarks we will assume in the following without
loss of generality that V > 0 and h(0) > 0.

3. TYPES OF LONG-TIME BEHAVIOR

The aim of this section is to classify the different types of long-time
behavior of solutions to (1)–(2).

The LSW Model for Domain Coarsening 1121

File: KAPP/822-joss/104_5-6 342344 - Page : 9/32 - Op: DS - Time: 12:58 - Date: 13:08:2001



An important part will be played by the maximum particle volume at
time t which we will denote by

v̄(t) :=v(t, 0)=sup
j
v(t, j).

The main difference between the volume constraint (3) and the total-mass
constraint (2) is that in the former case one always has v̄1/3h \ 1 and thus v̄
is always increasing. Even though this does not hold in general here, one
has the following simple but fundamental result, that for sufficiently large
times the largest particle volume is monotone in time.

Lemma 3.1. If t0 > 0 exists such that “tv̄(t0)=0, then either (i)
sgn “tv̄(t)=sgn(t− t0) for t near t0, or (ii) the solution is in equilibrium for
t \ t0, with v(t0, j)=v̄(t0) for j ¥ [0, j̄(t0)) and zero otherwise.

This result implies the following. Let Te=. if the solution never
reaches equilibrium, otherwise let Te be the first time equilibrium is reached.
Lemma 3.1 implies that “tv̄(t0)=0 for at most one point t0 ¥ (0, Te). If such
a point exists then “tv̄ < 0 on (0, t0) and “tv̄ > 0 on (t0, Te). If no such t0
exists then “tv̄ is of one sign on (0, Te) and either sign is possible.

Proof. The function “tv̄ is locally Lipschitz, and under the given
hypothesis we compute that since 1−v(t0, 0)1/3 h(t0)=0,

“t(“tv̄)(t0)=v̄1/3“th=v̄1/3 F
j̄(t0)

0
(1−v(t0, j)1/3 h(t0)) dj \ 0,

with equality only if equilibrium has been reached. In the case of strict
inequality, the signs of “tv̄(t) and t− t0 agree for t near t0. L

3.1. The Case of a Dirac Delta at the Tip

In this section we consider data f0 which carry a Dirac delta at the end
of the support. In terms of the volume ranking v this means that the data v0
and hence also v(t, · ) are constant on an interval [0, a). The results in this
case show that the solution approaches some equilibrium. The number of
possibilities depends on the size of V. If V is less than a critical value, then
all particles are always extinguished in finite time, while if V is large
enough, there are three possible long-time equilibrium states.
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Proposition 3.2. Assume that for some a ¥ (0, 1] the data satisfy
v0(0)=v0(j) for 0 [ j < a and v0(0) > v0(j) for j > a. Then v. :=
limtQ. v̄(t) and h. :=limtQ. h(t) exist, and either

(i) v.=0 and for sufficiently large t we have v̄(t)=0 and h(t)=V, or

(ii) v. > 0 is a zero of the function F(v) :=Vv1/3−av4/3−1, and h.=
v −1/3. and limtQ. j̄(t)=a.

Proof. In case the solution reaches equilibrium in finite time the
conclusions follow easily, so we suppose otherwise. In particular we
suppose that v̄(t) > 0 for all t. Note that h(t) [ V by (7), so if v̄(t) < 1/V3

at some time t then v̄ must subsequently decrease and vanish in finite time.
Hence v̄(t) \ 1/V3 for all t.

Next, note that the assumptions on the data imply that for all times
v(t, j)=v̄(t) for j ¥ [0, a) and v(t, j) < v̄(t) for j > a. Conservation of
mass now yields that

V > F
1

0
v(t, j) dj \ av̄(t)

and hence v̄(t) is uniformly bounded. With Lemma 3.1 we get that
limtQ. v̄(t) exists.

Now,

v. :=lim
tQ.
v̄(t)=v̄(t0)+F

.

t0
“tv̄(t) dt <..

From (7) and (5) it follows that h(t) and “tv(t, j) are uniformly bounded.
Hence v( · , j) and h, and therefore “tv̄, are globally Lipschitz. Now it
follows that limtQ. “tv̄(t)=0. This implies that h. :=limtQ. h(t) exists and
h.=1/v

1/3
. ¥ (0, V].

Next, since a−b \ (a3−b3)/3a2 for a > b > 0, we have that

“t(v̄(t)−v(t, j))=h(t)(v̄(t)1/3−v(t, j)1/3)

\
h(t)
3v̄(t)2/3

(v̄(t)−v(t, j))

as long as v(t, j) > 0. We know that lim inft > 0 h(t) > 0 and that v̄ is
bounded. It follows from this and the above inequality that there is a con-
stant c > 0 such that

v̄(t)−v(t, j) \ (v̄(0)−v(0, j)) ect
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as long as v(t, j) > 0. Since v̄ is bounded and since v(0, j) < v̄(0) for all
j > a, it follows that for any j > a we have v(t, j)=0 for sufficiently large
time and this proves that j̄(t)Q a as tQ.. (We also see that if
v̄(0)−v(0, a) > 0 then j̄(t)=a for sufficiently large t.)

With this result, (9) implies that h.=V−av. and hence

0=lim
tQ.
“tv̄=v

1/3
. (V−av.)−1=F(v.). L

For a further analysis of the asymptotic behavior we concentrate on
the function

F(v)=Vv1/3−av4/3−1.

We see that F is strictly concave in R+, F(0)=−1 and F(v)Q −. as
vQ.. Hence F has no positive zero if V < Vg :=4a1/4/33/4 and two dif-
ferent positive zeros v1 < v2 if V > Vg. If V=Vg then F touches the v-axis
tangentially.

For fixed a ¥ (0, 1] consider now the set of possible configurations of
initial data containing a Dirac mass at the tip with amplitude a:

Ma :={v0 ¥ rcd : v0(0)=v0(j) for j < a, v0(0) > v0(j) for j > a}.

Given V ¥ R+, let

Ma
0 :={v0 ¥Ma : v̄(t)=0 for sufficiently large t},

Ma
1 :={v0 ¥Ma : v̄(t)Q v1 as tQ.},

Ma
2 :={v0 ¥Ma : v̄(t)Q v2 as tQ.}.

That is, Ma is subdivided for given V according to the asymptotic behavior
of the solution with initial data v0.

Proposition 3.3. i) Ma=Ma
0 2Ma

1 2Ma
2.

ii) If V < Vg then Ma=Ma
0.

iii) If V > Vg then Ma
0 and Ma

2 are nonempty open subsets of Ma, and
Ma
1 is nonempty and closed in Ma.

Proof. Parts i) and ii) follow directly from Proposition 3.2.
We claim Ma

0 is nonempty and open in Ma for all V > 0: We can
always choose v̄(0) small enough, for example v̄(0) [ 1/2V such that
“tv̄(t) [ −1/2 as long as v̄(t) > 0 and hence v̄(t)=0 for sufficiently large t.
Thus, Ma

0 is nonempty and from the continuous dependence on the data it
follows that it is open in Ma.
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If V \ Vg then Ma
2 is nonempty: We choose for example v0(j)=0 for

j > a. This implies h0=V−av̄(0) and h(t)=V−av̄(t) for all t > 0. If we
take v̄(0) > v1 then “tv̄(t)=F(v̄(t)) for all t and v̄Q v2.

If V > Vg then Ma
2 is open in Ma: Let C1 :=−FŒ(v2)/2 > 0, then for

e > 0 sufficiently small we have + F(v2± e) < C1e. For e > 0, C2 > 0 define

Ne={v ¥Ma : |v̄−v2| < e and v(j) < C2e for j \ a+C2e}.

Then whenever v(t) ¥Ne and e is sufficiently small, “tv(t, j) [ 0 for
j \ a+C2e and

“tv̄(t)=v̄(t)1/3 1V−F
1

0
v(t, j) dj2−1=F(v̄(t))−r(t),

where

r(t)=v̄(t)1/3 1F 1
0
v(t, j) dj−av̄(t)2 [ (v2+e)1/3 ((v2+e)+(1−a)) C2e.

We can choose C2 so that if e is sufficiently small then |r(t)| < C1e. It
follows that if v̄=v2± e then “tv̄ and v2−v̄ have the same sign. This shows
that Ne is positively invariant.

Now, if v0 ¥Ma
2 then by Proposition 3.2 we know that v(t) ¥Ne for

sufficiently large t. Since Ne is positively invariant and open in Ma, from
the continuous dependence on data it follows Ma

2 is open in Ma. L

3.2. The Case of No Dirac Delta at the Tip

Throughout this section we assume that no positive fraction of par-
ticles has maximal volume. In this case the only equilibrium state is v — 0
with h=V. The different kinds of long-time behavior are classified by the
following result. All the possibilities occur due to Proposition 3.5 below.

Proposition 3.4. Assume v̄(0) > v0(j) for all j > 0. Then j̄(t)Q 0
as tQ. and

either v̄(t)=0 and h(t)=V for sufficiently large t
or v̄ is decreasing on (0,.), v̄(t)Q 1/V3 and h(t)Q V as tQ.
or v̄(t)Q. as tQ. and lim inftQ. h(t)=0.

Proof. The first alternative corresponds to the case in which the
solution reaches equilibrium in finite time. We suppose this is not the case.
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Then, as in the proof of Proposition 3.2, we have that v̄(t) > 1/V3 for all t.
Lemma 3.1 implies that either v̄Q. or that limtQ. v̄(t) exists.

Next, we claim lim inf h > 0 implies that v̄ is bounded: Assume that
lim inftQ. h(t) > d > 0. This implies that v̄(t) [ 1/d3 for all t. Otherwise,
since v(t, · ) is right continuous there exists t0 > 0 and j0 > 0 such that
v(t0, j0)1/3 d−1 > e and hence “tv(t, j0) \ e > 0 for all t > t0. Thus v(t, j0) is
unbounded which contradicts

V \ F
1

0
v(t, j) dj \ j0v(t, j0).

We claim also, lim inf h=0 implies v̄Q.: Assume lim inftQ. h(t)
=0. We know from Lemma 3.1 that either v̄(t) is monotonically decreas-
ing or there exists t0 such that v̄(t)1/3 \ 1/h(t) for all t > t0. In the second
case it is clear that lim inftQ. h(t)=0 implies that v̄(t)Q.. If “tv̄(t) < 0
for all t then also “tv(t, j) < 0 for all j > 0 and hence > v(t, j) dj < V is
decreasing. By assumption there exists a sequence tnQ. such that
h(tn)Q 0. But this implies > v(tn, j) djQ V which gives a contradiction.

Suppose now that v̄ is bounded. Then lim inf h > 0 and as in the proof
of Proposition 3.2 we have that

v̄(t)−v(t, j) \ (v̄(0)−v0(j)) ect

for some positive c as long as v(t, j) > 0. But this yields j̄(t)Q 0 as tQ.,
hence >10 vQ 0 and h(t)Q V. Furthermore, by Lemma 3.1 and the argu-
ment in the proof of Proposition 3.2 it must hold “tv̄Q 0. But this implies
that v̄(t)Q 1/V3. Note that since v̄(t) > 1/V3, by Lemma 3.1 v̄ must be
decreasing for all t in this case.

It remains to consider the case that v̄(t)Q. which implies
lim inftQ. h(t)=0. Assume that j̄Q jg > 0 as tQ.. Since h is continuous
there exists for all sufficiently small e > 0 a time te such that h(te)=e and
that h(t) > e in an interval (te−d, te). But then it follows with
> v1/3dj [ > (v+1) dj [ V+1 that

“th(te)=F
j̄(te)

0
1−v1/3(t, j) h(te) dj \ jg− e(V+1) > 0

which gives a contradiction. L

Now consider

M :={v0 ¥ rcd : v0(0) > v0(j) for all j > 0}
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and for fixed V ¥ R+ denote

M0 :={v0 ¥M : v̄(t)=0, h(t)=V for sufficiently large t},

M1 :={v0 ¥M : v̄(t)Q 1/V3, h(t)Q V as tQ.},

M2 :={v0 ¥M : v̄(t)Q. as tQ., lim inf
tQ.

h(t)=0}.

Even though the situation here might look quite different from the case of
a positive fraction of largest particles, one can view it as the formal limit as
aQ 0. Then we have F(v)=Vv1/3−1, v1=1/V3 and v2=. and we obtain
a result analogous to Proposition 3.3.

Proposition 3.5. i) M=M0 2M1 2M2.

ii) M0 and M2 are nonempty open subsets of M, and M1 is nonempty
and closed in M.

Proof. Part i) follows from Proposition 3.4. As in the proof of Pro-
position 3.3 one easily sees that M0 is nonempty and open in M. If
v̄(t)1/3 > 1/h(t) for some time t, this remains true for all later times due to
Lemma 3.1 and we have v̄(t)Q. as tQ.. If we choose v̄(0)1/3 > 1/h0 we
see that M2 is nonempty. By continuous dependence on the data it is clear
that M2 is also open in M. L

4. LONG-TIME BEHAVIOR II

From now on we will always consider the case that no positive frac-
tion of particles has maximal volume and that the largest particle volume is
unbounded. Contrary to the last section we will work in the following with
the distribution function j(t, v) and not any longer with the volume
ranking v(t, j).

Given the volume ranking v the distribution function j can be
recovered via

j(t, y)=sup {x | v(t, x) > y}K0

for y \ 0. Note that yW j(t, y) is right continuous with support in
[0, v̄(t)], and j̄(t)=j(t, 0). If V is given as in Proposition 2.2 we have

j(t,V(t, y))=sup {x | V(t, v0(x)) >V(t, y)}

=sup {x | v0(x) > y}=j0(y) (14)
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if 0 <V(t, y) < v̄(t). Thus, if the data j0 are differentiable, j is a solution
of the advection equation

“tj+(v1/3h(t)−1) “vj=0.

As follows from 2.5.18(3) in ref. 4, for example, the change of
variables formula

F
1

0
f(v(t, x)) dx=−F

.

0
f(y) dj(t, y)=F

.

0
j(t, y) fŒ(y) dy (15)

is valid for any C1 function f: (0,.)Q R with compact support. Since
j(t, · ) is bounded with compact support in [0, v̄(t)], Eq. (15) remains
valid for f(v)=vp with p > 0. Conservation of mass may then be expressed
as

h(t)+F
.

0
j(t, v) dv=V.

The assumption v̄(t)Q. implies with Proposition 3.4 that
lim inftQ. h(t)=0 and lim suptQ. >.0 j(t, v) dv=V. From Lemma 2.3 we
have

“th(t)=“
−
t h(t)=j(t−0, 0)−h(t) F

v̄(t)

0

j(t, y)
3y2/3

dy, (16)

“th(t)=“
+
t h(t)=j(t, 0)−h(t) F

v̄(t)

0

j(t, y)
3y2/3

dy. (17)

4.1. Rescaled Variables

From Lemma 3.1 we know that there is a time t0 such that v̄ is strictly
increasing for all t > t0. Since we are interested in the behavior for large
times we assume without loss of generality that t0=0. Now we rescale with
respect to the maximal volume v̄(t) by introducing the new variables

y=ln
v̄(t)
v̄(0)
, u=1−

v
v̄(t)
, k(y, u)=v̄(t)

j(t, v)
V
. (18)

1128 Niethammer and Pego

File: KAPP/822-joss/104_5-6 342344 - Page : 16/32 - Op: DS - Time: 12:58 - Date: 13:08:2001



For each y \ 0, the function uW k(y, u) is left continuous and increasing
on [0, 1] with k(y, 0)=0. With k0(u)=v̄(0) j0(v)/V, Eq. (14) implies that
the evolution of k(y, u) is determined by the relation

k(y, U(y, u))=eyk0(u), (19)

as long as 0 <U(y, u) < 1, where U(y, u)=1−V(t, v)/v̄(t) satisfies

“U

“y
=(o(y) Q(U)−1) U, U(0, u)=u, (20)

where Q is given by

Q(u)=3 11−(1−u)
1/3

u
2 . (21)

The function Q satisfies Q(0)=1, Q(1)=3, and is given by a power series

Q(u)=1+
1
3
u+
5
27
u2+·· · ,

which converges for |u| < 1 and whose coefficients are all positive. (Hence
Q(u) [ 1+2u for 0 [ u [ 1.) The function o(y) > 13 is determined from

3o(y)
3o(y)−1

=x(y) :=v̄(t)1/3h(t) > 1. (22)

Conservation of mass is now expressed by

x(y)
e − y/3

c
+F

1

0
k(y, u) du=1 (23)

where c=v̄(0)1/3 V.
For differentiable initial data, k satisfies

“yk+(o(y) Q(u)−1) u“uk=k (24)

for 0 < u < 1, y > 0, and the characteristics of this PDE are given by (20).
Since o(y) Q(1)−1 > 0 for all y, every point (y1, u1) ¥ (0,.)×(0, 1) lies on
a unique characteristic that can be continued back to time y=0. That is,
u1=U(y1, ũ1) for some ũ1 ¥ (0, 1).
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From (16)–(17) we compute

“yx(y)=“
−
y x(y)=ce

y/3 1e −y/3
3c
x(y)+

b(y−0)
x(y)−1

−c(y)2 , (25)

“yx(y)=“
+
y x(y)=ce

y/3 1e −y/3
3c
x(y)+

b(y)
x(y)−1

−c(y)2 , (26)

where

b(y)=k(y, 1)−F
1

0

k(y, u)
3(1−u)2/3

du, c(y)=F
1

0

k(y, u)
3(1−u)2/3

du.

Note that b(y) > 0 and c(y) > 0 for all y > 0.

4.2. Solutions with Constant Mean Field

We are now interested in possible asymptotic states as yQ.. We first
note that equation (24) coupled with (23) does not have stationary solu-
tions. But if o converges to a constant and k to a function as yQ. then
(for the moment formally) these limits solve the same stationary problem as
(24) coupled with conservation of volume fraction. We will see that one can
easily construct explicit solutions of (24) and (23) with constant o that
converge to solutions of the associated stationary problem.

Solutions of the corresponding stationary problem are increasing
functions kg which solve

d
du

ln kg(u)=
1

u(ogQ(u)−1)
(27)

for 0 < u < 1 and a constant og, with the normalization

F
1

0
kg(u) du=1. (28)

In ref. 14, section 4, solutions of this equation are extensively studied.
There it is shown in Lemma 4.1 that any function kg which has finite total
volume must have compact support. This is satisfied for all solutions of
(27) with og \ 1. By integrating (27) one can easily see that solutions can be
characterized by the exponent p=1/(og−1), which describes the vanishing
behavior of kg as uQ 0. Hence, we will write Yp to denote the solution of
(27)-(28) with og=1+1/p.
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Lemma 4.1 (ref. 14, Lemma 4.2). For any p ¥ (0,.] there is a
solution to (27) with og=1+

1
p . For p <. the profile has the form

Yp(u)=ap(u) up

where ap is decreasing and analytic on [0, 1). For p=. (og=1) we have
Y.(u)=o(uq) as uQ 0 for all q > 0.

In Chapter 4 of ref. 14 and in ref. 7 analytical expressions for the
solutions are given.

In the following we denote by Yp(u) always the solution which is
normalized such that (28) holds. This normalization implies ap(1) [ p+1 [
ap(0), and we note that (27) yields

−
“

“u
ln ap(u)=

1
u
1 1
og−1

−
1

ogQ(u)−1
2=og(Q(u)−1)

(og−1)
“

“u
ln Yp(u)

[ 2u(p+1) 1p
u
+
“

“u
ln ap(u)2 [

2(p+1) p
1+2(p+1) u

,

whence we infer that ln(ap(0)/ap(1)) [ p ln(2p+3). This yields the bounds

(p+1)(2p+3) −p up [Yp(u) [ (p+1)(2p+3)p up. (29)

As pQ 0 one has Yp(u)Q 1 for 0 < u [ 1. This corresponds to a particle
distribution which concentrates into a Dirac delta at the tip of the support.

With the solutions of the stationary problem at hand we can easily
construct solutions with constant og to (24) and (23). Those correspond to
asymptotically self-similar solutions to the equation in the original
variables.

Lemma 4.2. Let p ¥ (0,.] and let c > c0 where c0 is sufficiently
large. Then there is a nonnegative solution Fp, c(y, u), increasing in u, to
(23) and (24) for all y > 0 with constant o=1+1

p . It has the form

Fp, c(y, u)=Yp(u)−
e −y/3

c
cpYp(u)4/3 (30)

where cp is a positive constant.

Proof. We look for a solution of (23)-(24) of the form Fp, c=
kp+f(y) k̃ with o — og. If we plug this into the equation we immediately
find that (og, kp) must be a solution of the associated stationary problem
and hence we can find for all p ¥ (0,.] the solution og=1+

1
p and kp=Yp
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as in Lemma 4.1. For the remaining terms we conclude from (23) that
f(y)=−e −

y

3 and then it follows that k̃ must solve the equation

“u ln k̃(u)=
4
3

1
u(ogQ(u)−1)

and must be normalized such that

F
1

0
k̃(u) du=

1
c

3og
3og−1

=
1
c

3p+3
2p+3

. (31)

We immediately see that the solution is given by k̃=cpY
4/3
p /c where cp is

determined by the normalization.
Furthermore, it is trivial but important to note that the behavior at the

tip u=0 of Fp, c is the same as for Yp. In addition, we have to choose c
sufficiently large such that Fp, c(y, · ) is increasing for all y > 0. It is easily
seen that this can be done uniformly in p. L

4.3. First Consequences of Convergence to Self-Similar Form

Lemma 4.3. Assume that limyQ. k(y, u)=k.(u) exists for each
u ¥ [0, 1]. Then limyQ.1/o(y)=1/o. exists, where 1 [ o. [., and
k.(u)=Yp(u), where p=1/(o.−1) ¥ [0,.]. Moreover, as yQ., k(y, u)
converges uniformly for u in any compact subset of (0, 1].

Proof. The only step in the proof which is different from that of
Lemma 5.2 in ref. 14 is to conclude from the convergence of k that 1/o(y)
converges. The rest of the proof is identical. In fact, it is always the crucial
part to get control over o.

First, we show that o. :=lim supyQ. o(y) \ 1 by adapting an argu-
ment from ref. 14. Suppose o. < 1. Then since Q(0)=1, there is some
u0 > 0 for which o.Q(u)−1 < 0 for 0 < u [ u0. For sufficiently large y this
means “yU < 0 if U [ u0, hence there is a characteristic satisfying 0 <
U(y, u1) < u0 for y large. It follows from (19) that k(y, u) > eyk0(u1) for
u0 < u [ 1 and hence >10 k(y, u) du \ ey(1−u0) k0(u1)Q. as yQ.. But our
hypotheses imply that >10 k(y, u) duQ >10 k.(u) du <.. Therefore o. \ 1.

As we assume that k converges pointwise as yQ. the dominated
convergence theorem and (15) imply that >10 k(y, u) duQ 1 and from mass
conservation (23) we infer

x(y)
e −y/3

c
Q 0. (32)
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The convergence of k also gives

c(y)Q c. :=F
1

0

k.(u)
3(1−u)2/3

du, b(y)Q b. :=k.(1)−c.. (33)

Let us assume first that b.=0, which implies k.(u) — 1 and hence c.=1.
We claim that then limyQ. x(y)=1.

Let e > 0. It follows from (25), (32) and (33) that whenever y is suffi-
ciently large and x(y) > 1+e,

“yx(y)
e − y/3

c
[ x(y)

e −y/3

3c
+
b(y−0)
e
−c(y) < −

1
2
.

Hence lim supyQ.x(y) [ 1+e for any e > 0. Since x(y) > 1 for all y we
conclude that x(y)Q 1 as yQ.. That is, o(y)Q.. This covers the case
p=0.

Now we consider the case b. > 0. We define for all x > 1

F.(x)=
b.
x−1

−c..

The function F. is strictly decreasing and has a zero x.=1+b./c. > 1.
We claim that limyQ.x(y)=x.. For the proof we define

F(x, y) :=x
e −y/3

3c
+
b(y−0)
x−1

−c(y)

so that

“yx(y)=cey/3F(x(y), y). (34)

Choose e > 0 and let e1 :=−
1
2 F.(x.+e) > 0. With (32) and (33) we

conclude that for some sufficiently large y1, whenever y \ y1 and x(y) >
x.+e we have

|F(x(y), y)−F.(x(y))| [ e1.

Hence either F(x(y), y) [ F.(x(y)) < F.(x.+e)=−2e1 or

F(x(y), y) [ e1+F.(x(y)) < e1+F.(x.+e)=−
1
2 e1.

From this and (34) we conclude that lim supyQ. x(y) [ x.+e for all e > 0.
Similarly it follows lim infyQ. x(y) \ x.− e which proves the claim.
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In terms of o we find that o.=limyQ. o(y) exists. We have shown
that o. \ 1, and it remains only to show that k.(u) is the appropriate
solution to (27). The proof is analogous to that given in ref. 14, Lemma
5.2, and thus we omit it here. L

4.4. A First Criterion for Nonconvergence

The following proposition based upon a comparison principle trans-
fers directly from ref. 14 if one replaces volume conservation by the fact
that

lim sup
yQ.

F
1

0
k(y, u) du=

1
v

lim sup
tQ.

F
.

0
j(t, v) dv=1. (35)

Proposition 4.4 (cf. ref. 14, Prop. 5.1). Let k be determined by
(19)–(23), and suppose 0 < p <..

(a) If infu > 0 k0(u)/up > 0, then lim supyQ. o(y) \ 1+
1
p .

(b) If supu > 0 k0(u)/up <., then lim infyQ. o(y) [ 1+
1
p .

From this result together with Lemma 4.3, we immediately deduce a
simple criterion that forbids convergence of k(y, u) to Yp(u) for any par-
ticular p ¥ (0,.]. In particular this criterion applies to the limiting form
Y.(u) favored by the LSW theory.

Corollary 4.5. Suppose that for some real number q we have

inf
u > 0

k0(u)
uq
> 0.

Then for any p satisfying q < p [., it is impossible that limyQ. k(y, u)=
Yp(u) for all u ¥ [0, 1].

4.5. A Necessary (and Sufficient?) Condition for Convergence

Even though one might expect from the previous results that if
k(y, u)QYp(u) for 0 [ u [ 1 and if p=1/(og−1) <., then k0(u) ’ cup as
uQ 0, this is not exactly true. In Theorem 5.10 in ref. 14 we give a neces-
sary criterion for convergence which holds true here as well (Theorem 4.7
below). This criterion is related to the concept of regularly varying function
as is treated in the books of Seneta (16) and Bingham et al. (1) for example.
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Definition 4.6. A positive, measurable function g, defined on some
interval of the form (0, a], is called regularly varying at 0 (with exponent
p ¥ R) if

lim
xQ 0+

g(lx)
lpg(x)

=1 for all l > 0. (36)

If p=0, we say g is slowly varying at 0.

Our main result in ref. 14 gives a necessary condition for convergence
in the rescaled variables to any one of the stationary solutions Yp with
0 [ p <.. The main idea in the proof is that convergence of k implies
convergence of o and this in turn allows to control the characteristics. Since
convergence of o is ensured in Lemma 4.3 the arguments in the proof of
Theorem 5.10 in ref. 14 apply here as well and therefore we only state the
result.

Theorem 4.7 (cf. ref. 14, Th. 5.10). Assume that for some
p ¥ [0,.) we have

lim
yQ.
k(y, u)=Yp(u) for all u ¥ [0, 1].

Then k0 is regularly varying at 0 with exponent p.

Our conjecture is that the necessary criterion in Theorem 4.7 is also
sufficient for convergence to Yp as yQ.. A general proof is lacking, but
below we will prove sufficiency when p > 0 is sufficiently small and the
initial data is close to Yp in a certain sense. The following result reduces the
general problem of sufficiency to proving the convergence of o(y).

Theorem 4.8 (cf. ref. 14, Th. 5.11). Assume that limyQ. o(y)=
og ¥ (1,.]. Then, limyQ. k(y, u) exists for all u ¥ [0, 1] if and only if k0 is
regularly varying with exponent p=1/(og−1).

Since convergence of o is assumed, the proof of Theorem 5.11 in
ref. 14 transfers without significant changes to the present situation.

4.6. Conditional Stability for Small p

Next we show how to obtain control over o(y)−og when p > 0 is small
and the parameter c=v̄(0)1/3 V is large enough. With this control we prove
a shape-stability result for constant-mean-field solutions Fp, c with respect
to perturbations that are small in a sense related to the notion of
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regularly varying functions. For such small perturbations it is necessary
and sufficient for convergence that the data are regularly varying.

First we recall a few definitions and results from ref. 14.

Definition 4.9. We say that a real-valued, measurable function h,
defined on some interval [A,.), is locally linear at . (with slant p ¥ R) if

lim
yQ.
h(y+L)−h(y)=pL for all L ¥ R. (37)

If p=0 we say h is locally flat at ..

Lemma 4.10. Suppose h(− ln x)=− ln g(x). Then the following
are equivalent.

(i) g is regularly varying at 0 with exponent p.

(ii) h is locally linear at . with slant p.

We define the oscillation of a function h on an interval [a, b] to be

osc
z ¥ [a, b]

h(z)= sup
z ¥ [a, b]

h(z)− inf
z ¥ [a, b]

h(z)= sup
z1, z2 ¥ [a, b]

h(z1)−h(z2).

and the flatness modulus of h to be

=(y, y)=sup
ỹ \ y

osc
z ¥ [ỹ, ỹ+1]

h(y, z). (38)

Note that whenever 0 [ a < b < c,

osc
z ¥ [a, c]

h(y, z) [ osc
z ¥ [a, b]

h(y, z)+ osc
z ¥ [b, c]

h(y, z),

so for any positive integer n,

osc
z ¥ [y, y+n]

h(y, z) [ n=(y, y). (39)

Evidently, =(y, y) is decreasing in y, and we have =(y, y)Q 0 as yQ. if
and only if h(y, · ) is locally flat at ..

For the following we introduce new variables slightly different from
those in ref. 14:

y=− ln u, (40)

h(y, y)=− ln (k(y, e −y)/Fp, c(y, e −y)) (41)
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and =(y, y) will from now on always denote the flatness modulus of h as
defined in (41). The bound on =(y, 0) in the following theorem is a shape-
stability result, since if the flatness modulus =(y, 0) is small it means that
k(y, e −y) is close to a constant multiple of Fp, c(y, e −y), for y in any
compact interval.

Theorem 4.11. For sufficiently large c and sufficiently small p > 0
there exist positive constants dg and K0 with the following property. If the
scaled mean field and flatness modulus of h satisfy

: 1
o(0)
−
1
og
:+=(0, 0) [ dg

where og=1+
1
p , then

: 1
o(y)
−
1
og
:+=(y, 0) [K0 1 :

1
o(0)
−
1
og
:+=(0, 0)2

for all y \ 0.
If in addition k0( · ) is regularly varying with exponent p (equivalently,

if h(0, · ) is locally flat at .), then as yQ. it holds o(y)Q og, =(y, 0)Q 0
and limyQ. k(y, u)=Yp(u) for all u ¥ [0, 1].

Proof. We start by getting an a priori estimate on

g(y) :=
1
x(y)
−
1
xg
=
1
3
1 1
o(y)
−
1
og
2 ,

where

xg=
3og
3og−1

=
3+3/p
2+3/p

¥ 51, 3
2
6 .

Recall that Fp, c(y, · ) is monotone increasing for all y > 0 if the parameter
c > c0.

Lemma 4.12. Assume c >max(c0, 4), and assume that for some
yg > 0 we have =(y, 0) [ 1

2 and |g(y)| [ 1
6 for 0 [ y [ yg. Then there exists

K̄ \ 1, independent of h, c and p, such that

|g(y)| [ e −a(y) 1 |g(0)|+K̄ F
y

0
ea(s)aŒ(s) =(s, 0) ds2 (42)

for all 0 [ y [ yg with a(y)=>y0 aŒ(s) ds and aŒ(y) \ cey/3 for some c > 0.
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Proof. The function g is locally Lipschitz and is right and left differ-
entiable, and from (26) we have

“
+
y g=−

“
+
y x
x2
=−

cey/3k(y, 1)
x(x−1)
1 1
x
−F

1

0

k(y, u)
k(y, 1)

du
3(1−u)2/3

+
e −y/3

3c
x−1
k(y, 1)
2 .
(43)

With F=Fp, c as in (30) we obtain using (27) and (28) that

1
xg
−F

1

0

F(y, u)
F(y, 1)

du
3(1−u)2/3

+
e −y/3

3c
xg−1
F(y, 1)

=0 (44)

for all y \ 0. Divide (43) by the quantity

â(y) :=cey/3
k(y, 1)

x(y)(x(y)−1)

and add (44). It follows that

“
+
y g

â(y)
=−g(y)−I1(y)+

e −y/3

3c
1 xg−1
F(y, 1)

−
x−1
k(y, 1)
2 (45)

where

I1(y) :=F
1

0

1F(y, u)
F(y, 1)

−
k(y, u)
k(y, 1)
2 du
3(1−u)2/3

.

In the last term of (45) we write, using xg−x=xxgg,

xg−1
F(y, 1)

−
x−1
k(y, 1)

=
xxgg
F(y, 1)

+(x−1) 1 1
F(y, 1)

−
1

k(y, 1)
2 .

To proceed we divide the mass conservation equation (23) by k(y, 1) and
subtract the corresponding equation for F. This yields

I2(y) :=F
1

0

1F(y, u)
F(y, 1)

−
k(y, u)
k(y, 1)
2 du

= 1 1
F(y, 1)

−
1

k(y, 1)
211−xe

− y/3

c
2−e

− y/3

c

xxgg
F(y, 1)

. (46)
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Since 1 [ xg [
3
2 , our hypothesis |g(y)| < 16 implies x(y) < 2; hence for c > 4

we have 1−xe −y/3/c > 12 , and we can use (46) to write (45) in the form

“
+
y g=− â(y)((1−d1(y)) g(y)+I1(y)+

1
3 d2(y) I2(y)) (47)

where

d2(y)=
(x(y)−1) e −y/3/c
1−x(y) e − y/3/c

< 1

and

d1(y)=
e − y/3

3c
xxg
F(y, 1)

(1+d2(y)) <
4
5

since F(y, 1) > >10 F(y, u) du=1−xge −y/3/c > 58 .
We estimate I1(y) and I2(y) in (47) as follows. Using definition (41) we

find

I1(y)=F
.

0
(1−eh(y, 0)−h(y, y))

F(y, e −y)
F(y, 1)

1
3
(1−e −y) −2/3 e −y dy. (48)

We know that F(y, u) [ F(y, 1), and (39) yields

|h(y, 0)−h(y, y)| [ (y+1) =(y, 0).

In view of |1−ex| [ |x| e |x| for all x, and the presumption that =(y, 0) [ 1
2 ,

there exists K1 > 0 such that

|I1(y)| [ F
.

0
=(y, 0)(y+1) e=(y, 0)(y+1) 13 (1−e

−y) −2/3 e −y dy [K1=(y, 0).

(49)

In a similar way we also deduce the estimate

|I2(y)|=:F
.

0
(1−eh(y, 0)−h(y, y))

F(y, e −y)
F(y, 1)

e −y dy: [ 3K1=(y, 0). (50)

With

a(y) :=F
y

0
â(s)(1−d1(s)) ds
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we find using (47), (49) and (50) that

|“+y g(y)+aŒ(y) g(y)| [ aŒ(y) K̄=(y, 0)

where K̄=10 K1. The inequality (42) follows in standard fashion.
It remains to show that

aŒ(y) \
ey/3

5
k(y, 1)

x(y)(x(y)−1)
\ cey/3 (51)

for some c > 0. As long as |g(y)| < 16 we have x(y) < 2 and hence
k(y, 1) > >10 k(y, u) du=1−xe −y/3/c > 12 . Furthermore

1
x
\
1
xg
−
1
6
\
1
2

which implies (51) and finishes the proof of the lemma. L

To proceed further we have to estimate the flatness modulus in terms
of g, by following characteristics backwards. The estimate differs from that
in ref. 14 and we have to redo it.

Lemma 4.13. For c sufficiently large and 0 < p [ 1, there is a con-
stant C and a positive decreasing function Gp, c : [0,.]Q R with
>.0 Gp, c(y) dy [ C(p+c −1) such that the following holds. Assume that for
some yg > 0 we have

|g(y)|=
1
3
: 1
o(y)
−
1
og
: [ p
12(p+1)2

for 0 [ y [ yg. Then

=(y, 0) [ =(0, y/2p)+F
y

0
Gp, c(y−s) |g(s)| ds (52)

for all 0 [ y [ yg.

Proof. Given ỹ, ỹ > 0, let Y(ỹ, ỹ) denote the characteristic satisfying

“Y

“y
=−(o(y) Q(e −Y)−1), Y(ỹ, ỹ)=ỹ. (53)
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As long as |o −1−o −1g | [ p/4(p+1)
2 we have o [ 2og and |o−og| [ 1/2p.

Then for 0 [ y [ ỹ we have −“Y/“y \ o(y)−1 \ 1/2p, hence

Y(y, ỹ) \ ỹ+(ỹ−y)/2p. (54)

Suppose now that 0 [ ỹ [ ỹ1 [ ỹ2 [ ỹ+1. Let

Y1(y)=Y(y, ỹ1), y1=Y1(0),

Y2(y)=Y(y, ỹ2), y2=Y2(0).
(55)

Since yW −Q(e −y) is increasing, it follows that Y2(y)−Y1(y) is increasing
in y (i.e., characteristics are diverging); hence Y2(y)−Y1(y) [ 1 for 0 [
y [ ỹ.

Next we study how pairs of values of h(y, y) vary along characteristics.
Using (19), and (24) with o=og and k=Fp, c, we find

h(ỹ, ỹj)−h(0, yj)=F
ỹ

0
(o(y)−og) F(y, e −Yj(y)) dy (56)

where we compute that

F(y, u)=Q(u) u
“uFp, c(y, u)
Fp, c(y, u)

=
Q(u)

ogQ(u)−1
11−1

3
g(y, u)
1−g(y, u)
2 (57)

with

g(y, u)=
e −y/3

c
cpYp(u)1/3. (58)

Let Fj(y)=F(y, e −Yj(y)) and define Qj(y) and gj(y) similarly. Then

H(ỹ, ỹ1, ỹ2) :=(h(ỹ, ỹ2)−h(ỹ, ỹ1))−(h(0, y2)−h(0, y1))

= F
ỹ

0
(o(y)−og)(F2(y)−F1(y)) dy. (59)

To estimate |F2(y)−F1(y)| we use that a2b2−a1b1=(a2−a1) b2+
a1(b2−b1) and note that ogQ(u)−1 \ og−1=1/p and g(y, u) [ 1

2 for c > c0.
Then

: Q2(y)
ogQ2(y)−1

−
Q1(y)

ogQ1(y)−1
: [ p2 |Q1(y)−Q2(y)| [ 2p2e −Y1(y) (60)
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since 0 [ u2 [ u1 [ 1 implies 0 [ Q(u1)−Q(u2) [ Q(u1)−Q(0) [ 2u1. Also,

1
3
: g2(y)
1−g2(y)

−
g1(y)
1−g1(y)
: [ 4
3
|g2(y)−g1(y)|=

4
3
g1(y) 11−

g2(y)
g1(y)
2 . (61)

From (27) we see that

u
“

“u
ln g(y, u)=

1
3

1
ogQ(u)−1

[
p
3
, (62)

whence g2(y)/g1(y) \ e −p/3 since Y2(y)−Y1(y) [ 1.
Collecting these estimates we find with Q(u)/(ogQ(u)−1) [ p that

|F2(y)−F1(y)| [ 2p2e −Y1(y)+
4
3 p(1−e

−p/3) g1(y).

Due to the estimates on Yp(u) in (29) and the normalization (31) that
determines cp, we have cpYp(u)1/3 [ Ĉup/3 for 0 < p [ 1 for some Ĉ inde-
pendent of p. We then deduce by using (54) that

|F2(y)−F1(y)| [ 2p2e −Y1(y)+
4Ĉ
9c
p2e −Y1(y) p/3

[ p2(2e −(ỹ−y)/2p+Ĉc −1e −(ỹ−y)/6). (63)

Since |o−og|=3oog |g| [ 6(1+1/p)2 |g| we obtain

|H(ỹ, ỹ1, ỹ2)| [ F
ỹ

0
Gp, c(ỹ−y) |g(y)| dy (64)

with

Gp, c(s)=12(p+1)2 (e −s/2p+Ĉc −1e −s/6). (65)

Since ỹ1, ỹ2 ¥ [ỹ, ỹ+1] are arbitrary and ỹ+ỹ/2p [ y1 [ y2 [ y1+1, esti-
mate (64) directly implies (52). This finishes the proof of the Lemma. L

We now proceed with the proof of Theorem 4.11. Let ĝ(y) :=
sup0 [ s [ y |g(s)|. Using (52) in (42) and using K̄ >.0 Gp, c(y) dy [ C(p+c −1) < 12
for sufficiently large c and small p > 0, we find that as long as
|g(y)| [ p/12(p+1)2 < 16, we have

ĝ(y) [ 2(|g(0)|+K̄=(0, 0)) [ 2(13+K̄) dg. (66)
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Thus we may take dg=p/24(
1
3+K̄)(p+1)

2 to find |g(y)| [ p/12(p+1)2 for
all y > 0. Plugging (66) into (52) gives for sufficiently large c and small
p > 0 that =(y, 0) [ 2=(0, 0)+|g(0)| which proves the bound asserted in
the theorem with K0=2+6K̄.

Now assume that h(0, · ) is locally flat at . which implies
=(0, s/2p)Q 0 as sQ.. We get from (42) and (52), with

z(y) :=e −a(y) 1 |g(0)|+K̄ F
y

0
ea(s)aŒ(s)=(0, s/2p) ds2 ,

that

|g(y)| [ z(y)+K̄e −a(y) F
y

0
ea(s)aŒ(s) F

s

0
Gp, c(s− ŝ) |g(ŝ)| dŝ ds.

We know that z(y)Q 0 as yQ., that |g(y)| [ K̂=K0(=(0, 0)+|g(0)|) for
all y \ 0 and hence that g. :=lim supyQ. |g(y)| <.. Given e > 0, we
choose a time y0 such that |g(y)| [ g.+e for all y \ y0. Then using
K̄ >.0 Gp, c(y) dy < 12 we get

|g(y)| [ z(y)+K̂e −a(y) F
y0

0
ea(s)aŒ(s) F

s

0
Gp, c(s− ŝ) dŝ ds+

1
2 (g.+e),

and taking yQ. it follows g. [
1
2 (g.+e) which implies g.=0.

The convergence of =(y, 0) now follows from (52) and the convergence
of k from Theorem 4.8. L
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